
Acta Cryst. (2003). D59, 1619±1627 Cumbaa et al. � Auto-classification of sub-microlitre drops 1619

research papers

Acta Crystallographica Section D

Biological
Crystallography

ISSN 0907-4449

Automatic classification of sub-microlitre
protein-crystallization trials in 1536-well plates

Christian A. Cumbaa,a Angela

Lauricella,b Nancy Fehrman,b

Christina Veatch,b Robert

Collins,b Joe Luft,b George

DeTittab and Igor Jurisicaa*

aOntario Cancer Institute, 610 University

Avenue, Toronto, Ontario M5G 2M9, Canada,

and bHauptman±Woodward Medical Research

Institute, 73 High Street, Buffalo,

NY 14203-1196, USA

Correspondence e-mail: ij@uhnres.utoronto.ca

# 2003 International Union of Crystallography

Printed in Denmark ± all rights reserved

A technique for automatically evaluating microbatch (400 nl)

protein-crystallization trials is described. This method

addresses analysis problems introduced at the sub-microlitre

scale, including non-uniform lighting and irregular droplet

boundaries. The droplet is segmented from the well using a

loopy probabilistic graphical model with a two-layered grid

topology. A vector of 23 features is extracted from the droplet

image using the Radon transform for straight-edge features

and a bank of correlation ®lters for microcrystalline features.

Image classi®cation is achieved by linear discriminant analysis

of its feature vector. The results of the automatic method are

compared with those of a human expert on 32 1536-well plates.

Using the human-labeled images as ground truth, this method

classi®es images with 85% accuracy and a ROC score of 0.84.

This result compares well with the experimental repeatability

rate, assessed at 87%. Images falsely classi®ed as crystal-

positive variously contain speckled precipitate resembling

microcrystals, skin effects or genuine crystals falsely labeled by

the human expert. Many images falsely classi®ed as crystal-

negative variously contain very ®ne crystal features or

dendrites lacking straight edges. Characterization of these

misclassi®cations suggests directions for improving the

method.
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1. Introduction

High-throughput robotic protein-crystallization systems are

now capable of testing thousands of protein-cocktail combi-

nations per day. Problems and challenges with 1536-well

systems have been discussed in general, e.g. Garyantes (2002).

In this paper, however, we focus on the problem of auto-

matically evaluating the outcome of each trial, a problem

relevant even for lower-throughput systems. This problem is a

rate-limiting step in the search for favourable protein-

crystallization conditions, ordinarily requiring a human expert

(crystallographer) to visually assess the outcome of each trial.

Here, we describe progress in automating this evaluation step.

The choice of tool in a search for crystallization conditions

should re¯ect the task. A crystallographer who uses a 1536-

condition screen casts a wide net across the crystallization-

condition space. Often, the proteins in these screens do not

crystallize easily and any crystal outcome, even microcrystal-

line precipitate, is a positive result. Thus, we designed our

method to detect these borderline outcomes as well as larger

well formed crystals.

Several recent publications discuss automatic classi®cation

of images from 96-well (Spraggon et al., 2002; Wilson, 2002;

Rupp, 2003; Adams et al., 2002) and 1536-well (Jurisica,

Rogers, Glasgow, Collins et al., 2001) crystallization screens.
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Our work extends the limits of feasible automated high-

throughput protein crystallization screening to the sub-

microlitre drop level. Bodenstaff et al. (2002) discuss an

alternative method for crystal detection in sub-microlitre trials

which avoids signi®cant image analysis by using rotating

polarizing ®lters to highlight birefringent crystals. As in

Spraggon et al. (2002) and Adams et al. (2002), we classify the

state of the entire droplet; in contrast, the method of Wilson

(2002) classi®es individual objects within the drop. As in Rupp

(2003) and Bodenstaff et al. (2002), we restrict our evaluation

to a binary set of outcomes (crystals or no crystals).

Comparing image-analysis methods, the methods of Spraggon

et al. (2002) and Wilson (2002) use the Hough transform to

detect straight-line features (crystals) in their images. We use

the Radon transform, which is similar to the Hough transform,

for the same purpose. Unique to our method, we also employ a

correlation ®lter to detect microcrystals. These image-analysis

methods are all described in x2.3.

Our data comes from the robotic pipetting and imaging

system at the Hauptman±Woodward Medical Research Insti-

tute (HWI; Luft et al., 2001). The robotic crystallization system

at HWI has changed since the description of an earlier image-

analysis method developed for the system (Jurisica, Rogers,

Glasgow, Collins et al., 2001). The drop volume per well in the

1536-well plates has decreased from 1.0 ml to 400 nl. The

camera position has also changed: plates are now photo-

graphed from below and thus the drops are now seen through

the ¯oor of the plate instead of through the layer of mineral oil

that caps each well.

These changes have introduced factors that complicate

image analysis. Two changes are especially signi®cant: reversal

of the camera position and reduction of the droplet volumes.

Photographing experiments from the bottom of the well

makes crystal identi®cation by crystallographers easier. It

improves the quality of the image, eliminating the image

distortion that occurs when viewing the experiment drop

through a layer of oil. However, reversing the camera position

introduces the back-lit curved surface of the oil barrier in the

well which acts as a lens, concentrating light in the centre of

the well and leaving the edges dark. As a result, objects in the

centre of the well are relatively dark and contrast sharply with

the light background; objects to the sides of the well are

relatively light but contrast poorly with the dark background.

Photographing the droplets from below also ®lters the light

through the non-optical-grade plastic ¯oor of the well, intro-

ducing rippled bands of alternating light and dark into the

image, as shown in Fig. 1.

Decreasing the droplet volume (while using the same well)

changes the drop contour. Whereas droplets were approxi-

mately elliptical in shape before, they now frequently have

irregular non-convex contours as depicted in Fig. 1. Combined

with the non-uniform lighting, droplet segmentation is now

highly non-trivial and rivals the dif®culty of the classi®cation

problem. [In contrast, Spraggon et al. (2002), Wilson (2002)

and Jurisica, Rogers, Glasgow, Collins et al. (2001) each faced

the simpler problem of approximately circular drops against a

near-uniform background; each solved it with a simple

geometric technique.] We describe a probabilistic model of the

droplet boundary in x2.2.

2. Methods

Automatic image classi®cation comprises several stages: well

registration locates and eliminates the boundaries of the well,

droplet segmentation eliminates the edges of the drop and

feature extraction extracts descriptive features used during

image classi®cation.

2.1. Well registration

The ®rst step in the image-analysis problem is to locate the

boundaries of the well so that subsequent analysis may be

performed on its contents. Each well in the 1536-well plates

has the same dimensions and is photographed individually by

HWI's robotic imaging system. The result is a greyscale

632 � 504 image, with the well occupying a 425 � 425 pixel

square somewhere in the center. The edges of the well are

straight and are generally aligned within a degree or two of the

image axes.

We incorporate a previously described registration method

(Jurisica, Rogers, Glasgow, Collins et al., 2001). To obtain the

vertical well boundaries, we ®nd the pair of pixel columns

separated by the expected well width with the closest average

pixel intensity. We apply the same search through pixel rows

(separated by the expected well height) to obtain the hori-

zontal well boundaries.

2.2. Droplet segmentation

Before extracting features from the region of the image

containing the droplet, we have to identify the edges of the

droplet. This is the segmentation step. We use droplet

segmentation to divide the well interior into three pieces: the

Figure 1
A sample image illustrating complicating factors in image analysis. Back-
lighting causes non-uniform lighting (a bright centre surrounded by
darkness) and reveals ripples on the surface of the well bottom
(introducing spurious edges in the image). Small droplet volumes cause
droplets to form irregular non-convex contours.



empty well (W), the inside of a droplet (D) and the edge of a

droplet (E). This allows us to exclude the empty regions of the

well and the edges of the droplet from further analysis. We

include in the edge segment of an image any shadows or

re¯ective or highly refractive portions on the droplet-well

boundary. In most images, these regions are where the highest

intensity gradients and most extreme intensity values occur.

Thus, it is especially important that we exclude the droplet

edges from the image-smoothness and straight-edge analyses

described in x2.3. We do this at the risk of unintentionally

discarding crystals hiding in or near the droplet edge.

We used a probabilistic graphical model to segment the

central region of the well, illustrated in Fig. 2. We ®rst divide

the well into a grid of 17� 17 regions. Each region (i, j) in this

grid is represented by a pair of variables in the graphical

model, forming a 60-component mixture of multivariate

Gaussian distributions: one latent discrete variable

xi,j 2 (1, . . . , 60) controlling the active mixture component and

one observed vector-valued variable yi;j representing local

image intensity and gradient values computed directly from

the image. Each mixture models the local state of the well, be

it W, D or E. The state of region (i, j) is encoded in the value of

the latent variable xi,j, with 20 mixture components assigned to

each possibility. (Each possible state is given multiple mixture

components in order to cover the variety of textures possible

in an underlying image region with a given state.) Each latent

variable x
i,j

is also linked to its neighbors by conditional

probability relationships P�xi;jjxiÿ1;j�, P�xi�1;jjxi;j�, P�xi;jjxi;jÿ1�
and P�xi;j�1jxi;j�. These probabilities, together with the condi-

tional probability P�yi;jjxi;j� of the mixture, ensure that the

inferred value of xi,j depends on the local region of the image

as well as the values of its neighbors.

We refer to the complete set of latent variables X � fxi;jg as

the latent layer of the model and the complete set of observed

variables Y � fyi;jg as the observed layer of the model. A

con®guration X = x of the latent-variable layer represents a

possible segmentation of the well. Segmentation of a parti-

cular image is accomplished by inferring the most likely

con®guration from the probability distribution P(X|Y = y),

where y is computed directly from the image.

Inference in graphical models is ef®cient and exact when

the graph has a tree topology. The model used in this study

necessarily has a highly connected grid topology and so must

use an inexact Loopy Belief Propagation algorithm (Murphy

et al., 1999) to infer the most likely segmentation. The

message-passing schedule we employed amounts to several

iterations of alternately and iteratively updating each row of X

and then each column using the forward±backward algorithm.

We trained our segmentation model on 45 hand-segmented

images. To reduce the number of parameters in the model, we

tied all horizontal conditional probabilities P�xi;jjxiÿ1;j� to a

single distribution and did the same for all vertical conditional

probabilities P�xi;jjxi;jÿ1�. We also tied all mixture model

parameters together so that we only needed to train a single

60-component mixture model [i.e. a single mixture prior P(x)

and 60-component distributions of the observed variable

P(y|x)].

Validation of the image-segmentation model was performed

on a set of 50 hand-segmented images containing 4319

empty-well regions, 1348 droplet-border regions and 8783

intra-droplet regions. The segmenter correctly identi®ed 96%

of all well regions, 69% of all border regions and 95% of all

intra-droplet regions for a weighted mean of 93% overall

accuracy.
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Figure 2
The Bayes net segmentation model. (a) We divide the well into a 17 � 17 grid of tiles and compute a vector of image-intensity gradients for each tile.
These vectors are the observed values of variables yi,j. We model each tile's vector as a sample drawn from a mixture of multivariate Gaussians. (b) A
mesh of conditionally interdependent latent variables, one per tile, control which component is active in each mixture. (c) The active component in each
tile determines the segment (one of {W, D, E}) assigned to that patch of the image.
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2.3. Feature extraction

A single image contains a lot of information and many

different descriptive features can be extracted. However,

much of the information is redundant or irrelevant to the

classi®cation task. The goal is to extract a minimal set of

features that enables the classi®er to discriminate among

different crystallization experiment outcomes with high

accuracy.

Protein crystals come in a great variety of forms: micro-

crystals, microneedles, needle crystals and larger faceted

crystals. Although the case of microcrystals the image

magni®cation may not be suf®cient to discern these straight

edges, most crystalline material will exhibit this feature.

Straight edges in a droplet are therefore important features to

detect. Owing to their small size, microcrystals have no

straight edges of signi®cant length (tens of pixels). We thus

devised a set of image features speci®cally for detecting

microcrystals. Similarly, there are a variety of precipitates, but

the classi®cation of them is beyond the scope of this paper.

In total, we reduce each image to a vector of 23 features: 20

measuring microcrystal features, two measuring the presence

of straight edges detected within a droplet and one measuring

the smoothness of the contents of the droplet.

2.3.1. Image-analysis tools. Two image-analysis tools form

the computational basis of the image features computed by

our method: the Laplacian operator and the Radon transform.

The Laplacian operator computes the rate of change of the

intensity gradient in an image, i.e. the second derivative of the

intensity of an image. It is approximated by the following

convolution that computes the summed differences between

each pixel's intensity and its neighbors' intensities:

L�pi;j� � 4pi;j ÿ piÿ1;j ÿ pi�1;j ÿ pi;jÿ1 ÿ pi;j�1:

The Laplacian is useful as a discontinuity-detection tool, e.g.

for ®nding edges. The Laplacian of a point in an image with a

locally uniform gradient is zero, even if the gradient magni-

tude at that point is high. We use the Laplacian transform to

detect edges and the squared Laplacian values in an image

region to measure the local smoothness of the image.

The Radon transform (Weisstein, 2003), which is related to

the Hough transform, detects straight lines in an image. It

requires its input image to be pre-transformed by, for example,

an edge-detection algorithm, such that edges or discontinuities

are highlighted. (We do so using a Laplacian-of-Gaussian

convolution.) The Radon transform of an image I(i, j) is an

integral transform de®ned by

R��; k� � R1
ÿ1

I�k cos � ÿ l sin �; k sin � � l cos �� dl:

R(�, k) is thus the integral of I(i, j) along all points (i, j) on a

line of orientation � and of distance k from a parallel line

passing through the origin (0, 0). We use a discrete variant

suitable for pixelated image data. We would interpret any

large-magnitude R(�, k) value as evidence of a straight edge in

I oriented at an angle � from the vertical with a distance k

from a parallel line passing through the origin.

A notable characteristic of the Radon transform is that the

straight lines it detects need not be composed of contiguous

pixels: only the total number of pixels and their intensities

matter. This characteristic is advantageous when analyzing an

image with a sharp straight crystal edge periodically obscured

along its length by dust, precipitate, skin or image noise.

However, this same characteristic will confuse analysis when

many unrelated discontinuities lie collinearly in the same

image.

2.3.2. Detecting intra-droplet straight edges. The two

straight-edge scores are based on computed evidence of the

presence of straight lines inside the droplet. After eliminating

the droplet border and the surrounding empty well from the

image (see x2.2), the area inside the droplet is searched for

straight edges by applying a Radon transform to the Laplacian

of the Gaussian-blurred image. The Laplacian-of-Gaussian

(LoG) operation suppresses high-frequency image noise and

reveals edge pixels; the Radon transform, applied to edge

data, detects straight lines.

From the result of the Radon transform, the ®rst straight-

edge score is obtained by summing the evidence weights of all

signi®cant straight lines detected, where a threshold for

signi®cance was empirically determined from an informal

analysis of the Radon transforms of example images. The

second straight-edge score is obtained from the maximum

evidence weight of any straight line detected in the image.

2.3.3. Measuring local image smoothness. We use the

Laplacian operator to measure image smoothness. First the

droplet is subdivided into 16 � 16 pixel blocks and then the

Laplacian values within each block are squared and summed.

This yields a smoothness measure for each block. We select

the highest score to use as our measure of image smoothness.

2.3.4. Detecting microcrystal features/microcrystal corre-
lates. The microcrystal scores are based on comparisons of the

target image with a library of ten microcrystal exemplars

(selected by a crystallographer). Ten scores measure the

presence of target-image features matching each exemplar

and ten scores measure the presence of target-image features

matching the inverse image of the exemplar.

The ten individual microcrystals were cropped from a set of

example microcrystal-bearing images to produce a library of

ten images between 12 and 18 pixels on a side (see Fig. 3).

Figure 3
Microcrystal exemplars 1±5 and the surrounding regions of their source
image.



Prior to cropping, the example images were transformed using

the Laplacian operator.

20 microcrystal scores per target image were then generated

by applying each microcrystal from the library as a linear ®lter

against the Laplacian of the target image, effectively

computing the correlation between every possible super-

position of the Laplacians of the two images. Preliminary work

on this feature-detection method revealed that strongly

negative correlations are just as indicative of microcrystal

presence as strongly positive correlations. An image feature

correlating negatively with a microcrystal exemplar is

equivalent to the same feature correlating positively with the

inverse image of the same exemplar. A single microcrystal

may appear as its inverse image under different lighting

conditions. Thus, each exemplar is labeled with two correla-

tion values, the maximum and the minimum.

Since the set of exemplars is limited, no individual micro-

crystal in a new image is likely to correlate strongly with any

microcrystals in the library. This may not decrease the classi-

®cation accuracy signi®cantly, since microcrystals usually

appear many at a time and thus at least one or two should

correlate to an exemplar from the library.

2.3.5. Classification. Image classi®cation is performed by

linear discriminant analysis (LDA) using 23 numeric features

that represent each image. Before any images may be classi-

®ed, the linear discriminant must ®rst be trained using a set of

labeled images. Given two sets of 23-dimensional data points

(X and N), LDA computes the vector v that maximally

separates the points in X and N when projected onto v.

Further, LDA ®ts Gaussian distributions to X and N and

calculates the distance along direction v that serves as the

equiprobability boundary between the means of X and N. In

essence, LDA produces a 23-element vector v and a numeric

threshold t such that, given an image with feature vector f,

f � v > t, the image is in class X:

To classify a new image using LDA, we compute its feature

vector f and the dot product f�v and then compare it with our

threshold t.

3. Results

Our results are based on a set of 18 plates (27 648 images)

hand-labeled by experts as either crystal-positive (X, 2224

images) or crystal-negative (N, 25 424 images). We regard the

human expert labeling as ground truth.

3.1. Consistency

3.1.1. Machine consistency. We evaluated the consistency

of our classi®cation method by analyzing two plates containing

independently run identical crystallization trials of glucose

isomerase photographed after the same time lapse. A new

linear discriminant was computed for each plate using LDA

and training data drawn from the remaining hand-labeled

plates. Shown below is a confusion matrix for the two plates,

counting the number of images assigned to each class:

Thus, the machine classi®cation for both plates agreed that

399 wells contained crystals and that 923 wells contained no

crystals; they disagreed on the contents of the remaining 214

wells in each plate. The machine-assessed consistency rate was

thus 86% for this experiment.

3.1.2. Human expert consistency and experimental
repeatability. The same plates were also reviewed by a

human expert:

Thus, the expert labeling of both plates agreed that 372

wells contained crystals and that 970 wells contained no

crystals, while the remaining 194 wells showed con¯icting

results. These numbers yield a consistency rate and thus an

experimental repeatability rate of 87% for this experiment.

3.1.3. Accuracy of the method on glucose isomerase trials.
We then compared the human expert's assessment of each

plate with the corresponding machine classi®cation, summar-

ized by these confusion matrices:

By assuming perfect accuracy of the human expert, we

obtain accuracy scores1 for our automated method: for plate 1,

precision 0.77, recall 0.69 and accuracy 85%; for plate 2,

precision 0.83, recall 0.76 and accuracy 88%.

3.2. Accuracy

To measure the overall accuracy of the system, we split our

set of 18 expert-reviewed plates into training and test sets of

equal size (each with 1112 X and 12 712 N images) and then
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1 Accuracy scores are derived from a confusion matrix which counts the
number of true positives (TP, images correctly classi®ed as bearing crystals),
true negatives (TN, images correctly classi®ed as non-crystal-bearing), false
positives (FP, misclassi®ed non-crystal-bearing images) and false negatives
(FN, misclassi®ed crystal-bearing images). Accuracy = (TP +TN)/(TP + TN +
FP + FN); precision = TP/(TP + FP); recall = TP/(TP + FN).
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performed feature extraction on each as described above.

After computing the optimal linear discriminant using LDA

on the training set, we evaluated the accuracy of the resulting

classi®er on the test set. The confusion matrix for our test set is

shown below.

From this matrix, we obtain a test-set accuracy score of

89%. However, accuracy scores in this context may be

deceiving. A 1536-well plate with 15 wells containing crystals

may be classi®ed with an accuracy exceeding 99% by a method

claiming that no wells contain crystals. Thus, the crystal-

detection task is better viewed as an information retrieval

task. In retrieval terms, our method has a precision of 0.40 and

a recall of 0.70.

3.2.1. Updated data. To test our method on a wider range of

image data, we added an extra 14 plates (21 504 images) to our

training and test sets, split equally between the two. A new

linear discriminant was computed from the updated training

set, and the performance of the classi®er was evaluated on the

updated test set:

From this matrix, we obtain an updated test-set accuracy of

85%. In retrieval terms, our method has a precision of 0.24 and

a recall of 0.66. These ®gures show a slight drop in classi®ca-

tion accuracy, especially in the precision of the method. The

higher scores of the original data set are explained in part by a

skewed distribution of crystal forms. The population of crystal

images in this set is dominated by crystals from the glucose

Figure 4
The ROC curves of image-retrieval exercises on two data sets: the
original set of 18 plates (dominated by two very fruitful glucose isomerase
plates) and an updated set with 14 extra plates added.

Table 1
Effect on accuracy, precision, recall and ROC scores of removing features
from analysis.

�X = microcrystal features (minimum and maximum correlations).

Excluded features � accuracy (%) � precision � recall � ROC

�X 1 ÿ0.9 ÿ0.015 ÿ0.017 ÿ0.005
�X 2 0 0 0.002 0
�X 3 ÿ0.1 ÿ0.001 0.003 ÿ0.001
�X 4 ÿ0.2 ÿ0.004 ÿ0.003 ÿ0.002
�X 5 ÿ0.4 ÿ0.005 0.001 0
�X 6 ÿ0.1 ÿ0.001 ÿ0.001 ÿ0.001
�X 7 ÿ3.5 ÿ0.042 ÿ0.006 ÿ0.021
�X 8 0 0.001 0.005 ÿ0.001
�X 9 ÿ0.1 ÿ0.002 0 0
�X 10 ÿ0.5 ÿ0.007 0.003 0
All �X ÿ8.9 ÿ0.092 ÿ0.053 ÿ0.081
Radon sum 0 0 0 0
Radon max. 0 0 0.005 0.002
Both Radon scores ÿ0.3 ÿ0.002 0.010 0.003
Image smoothness ÿ0.4 ÿ0.004 0.007 0
All non-�X ÿ0.5 ÿ0.005 0.008 0.001

Figure 5
Empirical cumulative distributions of projected feature vectors of X and
N images compared with their ideal Gaussian models.

Table 2
False positives.

Theme
No. of
images Comments

Speckled precipitate 92 >25% visually similar to microcrystals
Skin effects 20
Contaminated wells 6 Hair or ®bre
Mottled phase separation 1
Genuine crystals 4



isomerase plates. The updated data set contains a wider

variety of crystal forms and a smaller proportion of crystals.

3.2.2. Receiver operating characteristic. As described

above, linear discriminant analysis of our training set

established a linear combination of the

23 elements in the feature vector to

produce a single numeric score that

maximally (with respect to the training

sets) discriminates between crystal-

bearing and non-crystal-bearing

images. LDA also produced the

numeric threshold used to classify new

images (e.g. the test sets). Choosing a

threshold makes a trade-off between

including as many crystal-bearing

images while excluding as many non-

crystal-bearing images as possible.

Thus, the confusion matrices above

and the precision and recall scores

derived therefrom change as the

threshold changes: greater precision at

the expense of lower recall, or the

reverse. The receiver operating char-

acteristic (ROC) curves of these

retrieval exercises illustrate this trade-

off in Fig. 4. For the original retrieval

exercise, the area under its ROC curve,

called the ROC score, is 0.875. The

ROC score of the retrieval on the

updated data set is 0.84.

3.2.3. Impact of the various features.
In order to measure the importance

of the various features computed

for each image, we re-analyzed

the extended data set with various

feature-dimensions removed. The

changes in classi®cation accuracy

caused by these alterations are

summarised in Table 1.

3.2.4. Suitability of Gaussian
feature-modeling and linear discrimi-
nants. The linear discriminant analysis

used here assumes Gaussian distribu-

tions of the feature vectors in the X

and N sets. We chose a standard

LDA because of its simplicity, small

numbers of parameters and ultimate

effectiveness. Formally, however, the

Kolmogorov±Smirnov test rejects the

hypothesis that either distribution is

truly Gaussian. Fig. 5 plots the

empirical cumulative distributions of

the projected feature vectors (f�v)

for both X and N against the

Gaussian distributions that model

them, revealing asymmetrical tails. The

same ®gure also reveals an overlap

between X and N distributions: the

root cause of misclassi®cation.
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Figure 6
Misclassi®ed non-crystals: (a) contamination, (b) salt crystals (dried-out drop), (c) speckled
precipitate, (d) skin effects.

Figure 7
Genuine crystals detected by our method erroneously labeled as non-crystals.
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3.3. Characterization of misclassified images

3.3.1. False positives. Study of the false positives generated

by our method reveals distinct trends in the data. We manually

reviewed 101 images falsely classi®ed as bearing crystals. We

noticed several themes present in these images, with one

dominating (Table 2).

The classi®er is apparently being fooled by grains of

precipitate with a microcrystal-like appearance and by wrin-

kles in the skin that look like crystal edges (Fig. 6). The four

genuine crystals (shown in Fig. 7) were con®rmed as such,

post-analysis, by HWI crystallographers.

3.3.2. False negatives. We reviewed 204 images falsely

classi®ed as non-crystal-bearing and again noticed several

themes (Table 3).

Here, the broader themes are (i) crystals too ®ne for

detection and (ii) crystals without straight edges. Examples of

these false negatives are shown in Fig. 8.

4. Discussion

The assessed accuracy of our method compares well with the

results from an automatic classi®cation of images from 96-well

crystallization screens (Spraggon et al., 2002; Wilson, 2002). In

addition, our method achieves an accuracy comparable to the

repeatability rate of the experimental setup. This means that a

false result in a crystallization trial assessed by our method is

as likely to arise from experimental noise as it is from classi-

®cation error.

Despite the good results, we can learn from mistakes.

Images misclassi®ed by our system

suggest several directions for improving

classi®cation accuracy.

(i) Our method misses the ®ne crys-

talline features of some images. It is

likely that these features are being

washed out by the noise-reducing

Gaussian blur (� = 3) applied to each

image prior to the Radon transform

step. It is also possible that the Radon

intensity threshold is set too high. An

improved method would apply multi-

scale analysis using a range of � values

and could calculate a histogram of

Radon intensities rather than a count of

threshold-exceeding Radon maxima.

(ii) The dendritic crystals described

in x3.3.2 represent a signi®cant fraction

of misclassi®ed images. We need to

extract new features from our images

that identify this feathery texture.

(iii) We must distinguish between

microcrystals and speckled precipitates.

Microcrystals typically have a sparkle

(adjacent points of intensity signi®-

cantly above and below the local mean

intensity) that grains of precipitate do

not have. An improved method would

include a feature measuring this inten-

sity difference.

We are currently extending the

analysis method to classify the state of a

single well at multiple time points.

Knowledge of the state of a droplet at

past or future time points can improve

the accuracy of classifying the present

time point (see Fig. 9).

In addition to improving accuracy,

the method should be improved by

broadening classi®cation outcomes

beyond the current {X, N} dichotomy to

include, for example, crystals, micro-

Figure 8
Misclassi®ed crystals: (a) feathery dendrites, (b) out of focus, (c) multiple ®ne overlapping crystals,
(d) precipitate-like microcrystals, (e) crystals in the poorly lit border region of the drop, (f) crystals
in the poorly lit border region of the drop along with out of focus crystals in the illuminated portion
of the drop.



crystals, amorphous precipitate, skins, crystal aggregates (the

`crystal piles' of Wilson, 2002), phase separation and clear

drops. Multiple objects within a single droplet could also be

classi®ed individually, in the manner of Wilson (2002), so that

droplets containing different objects can be properly

described.

One issue requires separate attention. Despite improved

image-classi®cation accuracy, we still do not have a reliable

way of determining whether we are detecting salt or protein

crystals. Our current and future work is focused on deter-

mining optimal dyes that could be added to the solution to

enable differentiation of salt and protein crystals.

The image-classi®cation system described here is one

component of a larger intelligent system for reasoning on

protein crystallization. There are two main goals of this

system. The ®rst is automated discovery, via data mining, of

principles connecting protein-crystallization outcomes with

data such as sample-preparation details and protein sequence,

motif and family information. The second goal is the devel-

opment of a case-based reasoning (CBR) system for protein

crystallization. Its purpose is to assist in planning the search

through the cocktail space for ideal crystal-growth conditions

(Jurisica, Rogers, Glasgow, Fortier et

al., 2001). The motivating hypothesis

in each case is that proteins that

respond similarly to a large set of

crystallization trials will be similar in

other characteristics. The method

presented in this paper is crucial to

establishing the database on which the

CBR and data-mining systems

depend, but has obvious bene®ts to

crystallographers even without addi-

tional analysis as an automatic screen

evaluation.

The authors would like to thank

Janice Glasgow from Queen's University for stimulating long-

term collaboration on high-throughput protein crystallization

and case-based reasoning. We also wish to acknowledge Chris

Pal for his help in creating the segmentation model. This

research was supported by the Natural Science and Engi-

neering Research Council of Canada (NSERC) Nos. 224114

and 203833, National Institutes of Health (NIH) No. P50 GM-

62413, IBM Shared University Research grant and IBM

Faculty Partnership Award (IJ) and NIH GM-64655 (SGPP),

NIH GM-62413 (NESG), NCRR S10 RR016924, NASA

NAG8-1594, NASA NAG8-1839, NASA NCC8-232, The

WNY Foundation, The Cummings Foundation and The John

R. Oishei Foundation (JL, GD).

References

Adams, J., Jewell, D., Jorgensen, K., Mickley, M. & Newman, J. (2002).
J. Assoc. Lab. Autom. 7, 36±40.

Bodenstaff, E., Hoedemaker, F., Kuil, M., de Vrind, H. & Abrahams,
J. (2002). Acta Cryst. D58, 1901±1906.

Garyantes, T. K. (2002). Drug Discov. Today, 7, 489±490.
Jurisica, I., Rogers, P., Glasgow, J., Collins, R., Wol¯ey, J., Luft, J. &

DeTitta, G. (2001). IEEE Intell. Syst. J. 16(6), 26±34.
Jurisica, I., Rogers, P., Glasgow, J., Fortier, S., Luft, J., Wol¯ey, J.,

Bianca, M., Weeks, D. & DeTitta, G. (2001). IBM Syst. J. 40, 394±
409.

Luft, J., Wol¯ey, J., Jurisica, I., Glasgow, J., Fortier, S. & DeTitta, G.
(2001). J. Cryst. Growth, 232, 591±595.

Murphy, K., Weiss, Y. & Jordan, M. (1999). UAI'99: Proceedings of
the 15th Conference on Uncertainty In Arti®cial Intelligence, edited
by K. B. Laskey & H. Prade, pp. 467±475. San Francisco: Morgan
Kauffmann.

Rupp, B. (2003). Acc. Chem. Res. 36, 173±181.
Spraggon, G., Lesley, S. A., Kreusch, A. & Priestle, J. P. (2002). Acta

Cryst. D58, 1915±1923.
Weisstein, E. W. (2003). Eric Weisstein's World Of

Mathematics: Radon Transform, http://mathworld.wolfram.com/
RadonTransform.html.

Wilson, J. (2002). Acta Cryst. D58, 1907±1914.

Acta Cryst. (2003). D59, 1619±1627 Cumbaa et al. � Auto-classification of sub-microlitre drops 1627

research papers

Figure 9
Optimizing image classi®cation by incorporating time-series data. A hidden Markov process models
the changing state of the droplet contents in latent variables x. The observed variables y are the
feature vectors computed from their respective images. The value of each x is inferred from the value
of its corresponding y and its latent-variable neighbors.

Table 3
False negatives.

Theme
No. of
images Comments

Blurry crystals 17
Feathery crystals 55 Crinkled, even sweeping, curvy

feathery edges
Finely textured precipitate 22
Piles of small crystals 28 Similar to those described by

Wilson (2002)
Very ®ne small needle crystals 56
No obvious crystal 3 Unusual drop textures
Crystals near droplet edge 9 Suspected segmentation error


